Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Med Chem Lett ; 12(8): 1325-1332, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1345534

ABSTRACT

Non-covalent inhibitors of the main protease (Mpro) of SARS-CoV-2 having a pyridinone core were previously reported with IC50 values as low as 0.018 µM for inhibition of enzymatic activity and EC50 values as low as 0.8 µM for inhibition of viral replication in Vero E6 cells. The series has now been further advanced by consideration of placement of substituted five-membered-ring heterocycles in the S4 pocket of Mpro and N-methylation of a uracil ring. Free energy perturbation calculations provided guidance on the choice of the heterocycles, and protein crystallography confirmed the desired S4 placement. Here we report inhibitors with EC50 values as low as 0.080 µM, while remdesivir yields values of 0.5-2 µM in side-by-side testing with infectious SARS-CoV-2. A key factor in the improvement is enhanced cell permeability, as reflected in PAMPA measurements. Compounds 19 and 21 are particularly promising as potential therapies for COVID-19, featuring IC50 values of 0.044-0.061 µM, EC50 values of ca. 0.1 µM, good aqueous solubility, and no cytotoxicity.

2.
Structure ; 29(8): 823-833.e5, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1275725

ABSTRACT

There is a clinical need for direct-acting antivirals targeting SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, to complement current therapeutic strategies. The main protease (Mpro) is an attractive target for antiviral therapy. However, the vast majority of protease inhibitors described thus far are peptidomimetic and bind to the active-site cysteine via a covalent adduct, which is generally pharmacokinetically unfavorable. We have reported the optimization of an existing FDA-approved chemical scaffold, perampanel, to bind to and inhibit Mpro noncovalently with IC50s in the low-nanomolar range and EC50s in the low-micromolar range. Here, we present nine crystal structures of Mpro bound to a series of perampanel analogs, providing detailed structural insights into their mechanism of action and structure-activity relationship. These insights further reveal strategies for pursuing rational inhibitor design efforts in the context of considerable active-site flexibility and potential resistance mechanisms.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Protease Inhibitors/chemistry , Pyridones/chemistry , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Drug Design , Molecular Dynamics Simulation , Molecular Structure , Nitriles , Protease Inhibitors/pharmacology , Protein Conformation , Protein Multimerization , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
3.
ACS Cent Sci ; 7(3): 467-475, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1132027

ABSTRACT

Starting from our previous finding of 14 known drugs as inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19, we have redesigned the weak hit perampanel to yield multiple noncovalent, nonpeptidic inhibitors with ca. 20 nM IC50 values in a kinetic assay. Free-energy perturbation (FEP) calculations for Mpro-ligand complexes provided valuable guidance on beneficial modifications that rapidly delivered the potent analogues. The design efforts were confirmed and augmented by determination of high-resolution X-ray crystal structures for five analogues bound to Mpro. Results of cell-based antiviral assays further demonstrated the potential of the compounds for treatment of COVID-19. In addition to the possible therapeutic significance, the work clearly demonstrates the power of computational chemistry for drug discovery, especially FEP-guided lead optimization.

4.
ACS Med Chem Lett ; 11(12): 2526-2533, 2020 Dec 10.
Article in English | MEDLINE | ID: covidwho-889131

ABSTRACT

A consensus virtual screening protocol has been applied to ca. 2000 approved drugs to seek inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19. 42 drugs emerged as top candidates, and after visual analyses of the predicted structures of their complexes with Mpro, 17 were chosen for evaluation in a kinetic assay for Mpro inhibition. Remarkably 14 of the compounds at 100-µM concentration were found to reduce the enzymatic activity and 5 provided IC50 values below 40 µM: manidipine (4.8 µM), boceprevir (5.4 µM), lercanidipine (16.2 µM), bedaquiline (18.7 µM), and efonidipine (38.5 µM). Structural analyses reveal a common cloverleaf pattern for the binding of the active compounds to the P1, P1', and P2 pockets of Mpro. Further study of the most active compounds in the context of COVID-19 therapy is warranted, while all of the active compounds may provide a foundation for lead optimization to deliver valuable chemotherapeutics to combat the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL